██__██__███████_██████████████████████████████_███████████████████████████████████████ |██\/██|___||__███_________███___██__||██████████████████████████████████████ ||\/||/_\|'_\/_`|'_`_\/_\/_`|██████████████████████████████████████ ||██||(_)||||(_|||||||██__/(_||██████████████████████████████████████ |_|██|_|\___/|_||_|\__,_|_||_||_|\___|\__,_|██████████████████████████████████████ ||███_███_||__███______(*)█████████████████████████████████████████████████████ ||██||||'_\/_`|'_\||█████████████████████████████████████████████████████ ||__||_|||_)|(_||||||█████████████████████████████████████████████████████ |_____\__,_|_.__/\__,_|_||_|_|█████████████████████████████████████████████████████ ██████████████████████████████████████████████████████████████████████████████████████ ██████████████████████████████████████████████████████████████████████████████████████ (H)ome███████████████████████████████████████████████████████████████████████████████ ██████████████████████████████████████████████████████████████████████████████████████ ██████████████████████████████████████████████████████████████████████████████████████ ██████████████████████████████████████████████████████████████████████████████████████ ██████████████████████████████████████████████████████████████████████████████████████ ██████████████████████████████████████████████████████████████████████████████████████

My Research

I am a dedicated researcher specializing in Natural Language Processing (NLP), with a particular focus on named-entity disambiguation, ontology learning and population, semantic relation extraction, and text analysis for under-resourced languages. My research journey has revolved around developing novel methods and techniques to enhance the understanding and processing of natural language text.

During my doctoral studies, I conducted extensive research on building representations for natural language text elements, such as words, named-entities, and contexts, to tackle the challenging task of named-entity disambiguation for ontology population. To address this problem, I employed a predictive approach to generate continuous vector representations, or embeddings, which effectively captured the semantic and syntactic properties of these text elements. Moreover, I aimed to establish semantic relationships between the representations of named-entities and their corresponding contexts, enabling disambiguation through similarity measurements. To accomplish this, I leveraged machine learning tools, particularly TensorFlow, to construct and train specialized deep neural networks known as Autoencoders. These networks played a crucial role in generating the accurate representations required for named-entity disambiguation. Additionally, my research explored the utilization of these embeddings for semantic relation extraction between named-entities. By measuring the semantic similarity between candidate relations and their respective contexts, I aimed to enhance the extraction of meaningful relationships from natural language text.

In addition to my doctoral research, I have also delved into the field of under-resourced languages, focusing primarily on Malay and Banjar. I have contributed to the development of NLP resources for these languages, including tagged datasets that facilitate the training and construction of NLP models. Furthermore, my work within the research and development industry enabled me to delve into Malay text understanding. I designed and implemented methods for Malay word sense disambiguation and co-reference resolution, contributing to the improvement of NLP applications for the Malay language.

As a dedicated researcher, I am highly motivated to delve deeper into the realm of Natural Language Processing (NLP) and explore cutting-edge techniques that push the boundaries of our understanding. In particular, I am excited about the potential of multi-modal approaches to enhance NLP systems. By integrating information from multiple modalities, such as text, images, audio, and video, we can create a more comprehensive and nuanced representation of natural language data. For instance, incorporating image data can aid in tasks like named-entity recognition by analyzing visual cues, while audio data can be leveraged for sentiment analysis or speaker identification. Such multi-modal fusion can capture rich and diverse information, allowing NLP models to make more informed and nuanced decisions.

Another avenue of exploration involves leveraging advanced deep learning architectures. I aim to investigate and employ state-of-the-art models like transformer-based architectures, graph neural networks, or hierarchical recurrent neural networks to effectively capture and process the intricate relationships and dependencies within multi-modal data. These advanced architectures have shown promising results in other domains and adapting them to NLP tasks holds great potential for improving the performance and understanding of natural language.

Furthermore, I believe that incorporating external knowledge sources can significantly enrich the representations used in NLP systems. By leveraging existing ontologies, knowledge graphs, or semantic networks, we can provide contextual information and semantic relationships that enhance the comprehension of text elements and their interactions. These external knowledge sources can serve as valuable priors, guiding the learning process and enabling more accurate disambiguation, relation extraction, and ontology population.

By venturing into these innovative techniques, I hope to contribute to the advancement of NLP research and foster the development of intelligent systems that can better understand and process human language. Ultimately, my goal is to improve the overall performance of NLP systems by harnessing the power of advanced deep learning architectures, integrating external knowledge sources, and exploring the potential of multi-modal approaches.

Publications:

PhD thesis: Named-Entity Disambiguation for Ontology Population Using Embedding-Based Context Entity Semantic Relatedness/ Mohamed Lubani
The National University of Malaysia (Universiti Kebangsaan Malaysia), 2020.
[Abstract]

Text Relation Extraction Using Sentence-Relation Semantic Similarity
Mohamed Lubani and Shahrul Azman Mohd Noah
International Conference on Multi-disciplinary Trends in Artificial Intelligence, pp. 3-14, 2019.
🏆 Best Paper Award
[Abstract]

Ontology population: approaches and design aspects
Mohamed Lubani, Shahrul Azman Mohd Noah and Rohana Mahmud
Journal of Information Science 45 (4), 502-515, 2019.
[Abstract]

A Method and System for Co-Reference Resolution for Multi-Lingual Text Understanding
Benjamin Chu Min Xian, Mohammad Arshi Saloot, Mohamed Lubani, Khalil Bouzekri, Dickson Lukose.
MY Patent PI 2,016,002,112, 2018.

Building Compact Entity Embeddings Using Wikidata
Mohamed Lubani and Shahrul Azman Mohd Noah.
International Journal on Advanced Science, Engineering and Information Technology, vol. 8, no. 4-2, pp. 1437-1445, 2018.
[Abstract]

Master thesis: Self-tuned deep learning model for text relation extraction/ Mohamed Lubani
University of Malaya Library, 2015.
[Abstract]

Generating Conversion Rules for Malay-Banjar Translation
Mohamed Lubani, Rohana Mahmud
Proceedings of the 16th International Conference on Translation (ICT-16), University of Malaya, Kuala Lumpur, pp. 671-683, , 2017.

Benchmarking Mi-POS: Malay Part-of-Speech Tagger
Benjamin Chu Min Xian, Mohamed Lubani, Liew Kwei Ping, Khalil Bouzekri, Rohana Mahmud, and Dickson Lukose.
International Journal of Knowledge Engineering vol. 2, no. 3, pp. 115-121, 2016.
[Abstract]

Building A Dictionary of Malay Language Part-of-Speech Tagged Words Using Bahasa WordNet and Bahasa Indonesia Resources
Mohamed Lubani, Rohana Mahmud
International Conference on Malay Heritage and Civilisation (ICOMHAC 2015), Langkawi, Kedah, Malaysia, , 2015.

Optical flow based dynamic curved video text detection
Palaiahnakote Shivakumara, Mohamed Lubani, KokSheik Wong, Tong Lu
The 21st IEEE International Conference on Image Processing (ICIP 2014), Paris, France, , 2014.